SnS academy

a fingerprint school
Sincerity, Nobility and Service

XII

VECTOR ALGEBRA

1. If $\vec{a}=7 \dot{i}+j-4 k$ and $\vec{b}=2 i+6 j+3 k$, then find the projection of \vec{a} and \vec{b}.
2. Find λ, if the vectors $\vec{a}=i+3 j+k, \vec{b}=2 i-j-k$ and $\vec{c}=\lambda i+3 k$ are coplanar.
3. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors, then find the value of $|2 \vec{a}+\vec{b}+\vec{c}|$
4. Write the unit vector perpendicular to both the vectors $\vec{a}=i+j+k$ and $\vec{b}=i+j$
5. Find the unit vector in the direction of the sum of the vectors $2 i+3 j-k$ and $4 i-3 j+2 k$.
6. Find the area of the parallelogram whose adjacent sides are represented by the vectors $2 i-3 k$ and $4 j+2 k$.
7. If $\vec{r}=x i+y j+z k$, find $(\vec{r} \times \dot{i})(\vec{r} \times \vec{j})+x y$.
8. If $\vec{a}=i+2 j+k, \vec{b}=2 i+j$ and $\vec{c}=3 i-4 j-5 k$, then find the unit vector perpendicular to both of the vectors $(\vec{a}-\vec{b})$ and $(\vec{c}-\vec{b})$.
9. Two vectors $\vec{j}+k$ and $3 i-j+4 k$ represent the two side vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ respectively of triangle $A B C$. Find the length of the median through A.
10. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}.
11. If vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}
12. Find the value of p for which the vectors $3 i+2 j+9 k$ and $i-2 p j+3 k$ are parallel.
13. Find $\vec{a} .(\vec{b} \times \vec{c})$, if $\vec{a}=2 i+j+3 k, \vec{b}=i+2 j+k$ and $\vec{c}=3 i+j+2 k$.
14. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$.
15. Find a vector in the direction of $2 i-3 j+6 k$ which has magnitude 21 units.
16. Write the value of $i \times(j+k)+j \times(k+i)+k \times(i+j)$.
17. Prove: $\lfloor\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.
18. Vectors \vec{a}, \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$. Find the angle between \vec{a} and \vec{b}.
19. Show that the four points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are coplanar.
20. The scalar product of the vector $\vec{a}=i+j+k$ with the unit vector along the sum of the vectors $\vec{b}=2 i+4 j-5 k$ and $\vec{c}=\lambda i+2 j+3 k$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b}+\vec{c}$.
21. Show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.
22. Find the unit vector perpendicular to both of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=i+j+k ; \vec{b}=i+2 j+3 k$.
23. If $\vec{a}=x i+2 j-z k$ and $\vec{b}=3 i-y j=k$ are two equal vectors, then write the value of $x+y+z$.
24. P and Q are two points with P.V s $3 \vec{a}-2 \vec{b}$ and $\vec{a}+\vec{b}$ respectively. Write the P.V of a point R which divides the line segment $P Q$ in the ratio 2:1 externally.
25. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a})(\vec{x}+\vec{a})=15$.
26. A and B are two points with position vectors $2 \vec{a}-3 b$ and $6 \vec{b}-\vec{a}$ respectively. Write the $P . V$ of a point P which divides the line segment $A B$ internally in the ratio 1:2.
27. If \vec{a} is a unit vector $(\vec{x}-\vec{a})(\vec{x}+\vec{a})=24$, then find the value of $|\vec{x}|$
28. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, write the value of the following : $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$.
29. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that vector $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.
30. If $\vec{a}=i+j+k$ and $\vec{b}=j-k$, find a vector \vec{c}, such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.
31. If $\vec{a}=i-j+7 k$ and $\vec{b}=5 i-j+\lambda k$, then find the value of λ, so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
32. The magnitude of the vector product of the vector $i+j+k$ with a unit vector along the sum of vectors $2 \vec{i}+4 j-5 k$ and $\lambda i 2 j+3 k$ is equal to $\sqrt{2}$. Find the value of λ.
33. Find a vector of magnitude 6, perpendicular to each of the vectors

$$
\vec{a}+\vec{b} \text { and } \vec{a}-\vec{b} \text {, where } \vec{a}=i+j+k, \vec{b}=i+2 j+3 k
$$

34. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
35. Let $\vec{a}=i+4 j+2 k, \vec{b}=3 i-2 j+7 k$ and $\vec{c}=2 i-j+4 k$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.
36. Write the direction cosines of the vector $-2 i+j-5 k$.
37. Write the projection of the vector $\vec{i}-\vec{j}$ on $\vec{i}+\vec{j}$.
38. Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.
39. Write the position vector of the mid-point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.
40. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \cdot \vec{a}=0$, then what can be concluded about the vector \vec{b} ?
41. If two vectors \vec{a} and \vec{b} such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$ then find the value of $(3 \vec{a}-5 \vec{b})(2 \vec{a}+7 \vec{b})$
42. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 i+3 j-k, \vec{b}=i-2 j+k$.
43. Using vectors, find the area of the triangle with vertices are $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
44. If vectors $\vec{a}=2 i+2 j+3 k, \vec{b}=-i+2 j+k$ and $\vec{c}=3 i+j$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.
45. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$.
