SNS academy

a fingerprint school Sincerity, Nobility and Service

XII

VECTOR ALGEBRA

- 1. If $\vec{a} = 7\vec{i} + j 4k$ and $\vec{b} = 2i + 6j + 3k$, then find the projection of \vec{a} and \vec{b} .
- 2. Find λ , if the vectors $\vec{a} = i + 3j + k$, $\vec{b} = 2i j k$ and $\vec{c} = \lambda i + 3k$ are coplanar.
- 3. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors, then find the value of $\left| 2\vec{a} + \vec{b} + \vec{c} \right|$
- 4. Write the unit vector perpendicular to both the vectors $\vec{a} = i + j + k$ and $\vec{b} = i + j$
- 5. Find the unit vector in the direction of the sum of the vectors 2i+3j-k and 4i-3j+2k.
- 6. Find the area of the parallelogram whose adjacent sides are represented by the vectors 2i 3k and 4j + 2k.
- 7. If $\vec{r} = xi + yj + zk$, find $(\vec{r} \times \vec{i})(\vec{r} \times \vec{j}) + xy$.
- 8. If $\vec{a} = i + 2j + k$, $\vec{b} = 2i + j$ and $\vec{c} = 3i 4j 5k$, then find the unit vector perpendicular to both of the vectors $(\vec{a} \vec{b})$ and $(\vec{c} \vec{b})$.
- 9. Two vectors $\vec{j} + k$ and 3i j + 4k represent the two side vectors \overrightarrow{AB} and \overrightarrow{AC} respectively of triangle ABC. Find the length of the median through A.
- 10. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + \vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b} .
- 11. If vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 3$, $|\vec{b}| = \frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}
- 12. Find the value of p for which the vectors 3i + 2j + 9k and i 2pj + 3k are parallel.
- 13. Find $\vec{a}.(\vec{b}\times\vec{c})$, if $\vec{a}=2i+j+3k$, $\vec{b}=i+2j+k$ and $\vec{c}=3i+j+2k$.
- 14. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, find the value of $|\vec{b}|$.
- 15. Find a vector in the direction of 2i 3j + 6k which has magnitude 21 units.
- 16. Write the value of $i \times (j+k) + j \times (k+i) + k \times (i+j)$.
- 17. Prove: $\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$.
- 18. Vectors \vec{a} , \vec{b} and \vec{c} are such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$. Find the angle between \vec{a} and \vec{b} .

- 19. Show that the four points A(4, 5, 1), B(0,-1,-1), C(3, 9, 4) and D (-4,4, 4) are coplanar.
- 20. The scalar product of the vector $\vec{a} = i + j + k$ with the unit vector along the sum of the vectors $\vec{b} = 2i + 4j 5k$ and $\vec{c} = \lambda i + 2j + 3k$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.
- 21. Show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if and only if $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ are coplanar.
- 22. Find the unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $\vec{a} = i + j + k$; $\vec{b} = i + 2j + 3k$.
- 23. If $\vec{a} = xi + 2j zk$ and $\vec{b} = 3i yj = k$ are two equal vectors, then write the value of x + y + z.
- 24. P and Q are two points with P.V s $\vec{3a} 2\vec{b}$ and $\vec{a} + \vec{b}$ respectively. Write the P.V of a point R which divides the line segment PQ in the ratio 2:1 externally.
- 25. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x}-\vec{a})(\vec{x}+\vec{a})=15$.
- 26. A and B are two points with position vectors $2\vec{a}-3b$ and $6\vec{b}-\vec{a}$ respectively. Write the P.V of a point P which divides the line segment AB internally in the ratio 1:2.
- 27. If \vec{a} is a unit vector $(\vec{x} \vec{a})(\vec{x} + \vec{a}) = 24$, then find the value of $|\vec{x}|$
- 28. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, write the value of the following : $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}).$
- 29. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$, then prove that vector $2\vec{a} + \vec{b}$ is perpendicular to \vec{b} .

30. If
$$\vec{a} = i + j + k$$
 and $\vec{b} = j - k$, find a vector \vec{c} , such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

- 31. If $\vec{a} = i j + 7k$ and $\vec{b} = 5i j + \lambda k$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular.
- 32. The magnitude of the vector product of the vector i + j + k with a unit vector along the sum of vectors 2i + 4j 5k and $\lambda i 2j + 3k$ is equal to $\sqrt{2}$. Find the value of λ .
- 33. Find a vector of magnitude 6, perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = i + j + k$, $\vec{b} = i + 2j + 3k$.

- 34. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}| = 5, |\vec{b}| = 12$ and $|\vec{c}| = 13$, and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$.
- 35. Let $\vec{a} = i + 4j + 2k$, $\vec{b} = 3i 2j + 7k$ and $\vec{c} = 2i j + 4k$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c} = 18$.
- 36. Write the direction cosines of the vector -2i + j 5k.
- 37. Write the projection of the vector $\vec{i} \vec{j}$ on $\vec{i} + \vec{j}$.
- 38. Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a}.\vec{b} = \sqrt{6}$.
- 39. Write the position vector of the mid-point of the vector joining the points P(2, 3, 4) and Q(4, 1, -2).
- 40. If $\vec{a}.\vec{b} = 0$ and $\vec{a}.\vec{a} = 0$, then what can be concluded about the vector \vec{b} ?
- 41. If two vectors \vec{a} and \vec{b} such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a}.\vec{b} = 1$ then find the value of $(3\vec{a} 5\vec{b})(2\vec{a} + 7\vec{b})$
- 42. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a} = 2i + 3j k$, $\vec{b} = i 2j + k$.
- 43. Using vectors, find the area of the triangle with vertices are A(1,1,2), B(2, 3, 5) and C(1, 5, 5).
- 44. If vectors $\vec{a} = 2i + 2j + 3k$, $\vec{b} = -i + 2j + k$ and $\vec{c} = 3i + j$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- 45. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$.